THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH2050B Mathematical Analysis I (Fall 2016)
 Suggested Solutions to Homework 7

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y)=f(x)+f(y)$ for each $x, y \in \mathbb{R}$. Further suppose there exists $x_{0} \in \mathbb{R}$ at which f is continuous. Show that there exists a $c \in \mathbb{R}$ such that $f(x)=c x$ for any $x \in \mathbb{R}$.

Proof. We claim that $c=f(1)$, that is, for $x \in \mathbb{R}$,

$$
f(x)=x f(1)
$$

We will prove this in a sequence of steps:
Step 1: We will prove that $f(n x)=n f(x)$ for all $n \in \mathbb{Z}, x \in \mathbb{R}$.

First it is easy to note that by linearity,

$$
f(0)=f(0+0)=f(0)+f(0),
$$

which forces to $f(0)=0$.
Let $x \in \mathbb{R}$. We have $f(1 \cdot x)=f(x)=1 \cdot f(x)$. Assume $f(k x)=k f(x)$ for some $k \in \mathbb{N}, k \geq 1$. Then $f((k+1) x)=f(k x+x)=f(k x)+f(x)=k f(x)+f(x)=$ $(k+1) f(x)$. By induction, we have $f(n x)=n f(x)$ for all $n \in \mathbb{N}$.
More generally, given $n \in \mathbb{Z}$, if $n=0$ or $n \in \mathbb{N}$, then we are done; otherwise $-n \in \mathbb{N}$, and note that by linearity,

$$
f(n x)+f(-n x)=f(n x+(-n x))=f(0)
$$

Therefore, $f(n x)=-f(-n x)=-[(-n) f(x)]=n f(x)$. Hence $f(n x)=n f(x)$ for all $n \in \mathbb{Z}, x \in \mathbb{R}$.

Step 2: We show that $f(q x)=q f(x)$ for all $q \in \mathbb{Q}, x \in \mathbb{R}$.
Write $q=\frac{n}{m}$ in standard form, where $n \in \mathbb{Z}, m \in \mathbb{N}$. Then by Step 1 ,

$$
f(q x)=f\left(\frac{n}{m} \cdot x\right)=f\left(n \cdot \frac{x}{m}\right)=n f\left(\frac{x}{m}\right)
$$

Next, notice that we have $f(x)=f\left(m \cdot \frac{x}{m}\right)=m f\left(\frac{x}{m}\right)$, by linearity. Since we have $m \in \mathbb{N}, m \neq 0$. Thus dividing both sides by m, we have $f\left(\frac{x}{m}\right)=\frac{1}{m} \cdot f(x)$. By the above, $f(q x)=n \frac{1}{m} f(x)=\frac{n}{m} f(x)=q f(x)$, for any $q \in \mathbb{Q}, x \in \mathbb{R}$.

Notice that no continuity is needed in Steps 1 and 2.

Step 3: We claim that $f(x)=x f(1)$ for all $x \in \mathbb{R}$, and this step requires continuity of f. We first claim that continuity at x_{0} implies that f is continuous everywhere. Indeed, let $y \in \mathbb{R}$ be given, we will show that f is continuous at y.

Let $\epsilon>0$. Since f is continuous at x_{0}, there is $\delta>0$ such that for all $\left|x-x_{0}\right|<\delta$, $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$. Now with the same $\delta>0$, if $|x-y|<\delta$, then $\left|\left(x-y+x_{0}\right)-x_{0}\right|<\delta$. We have, by linearity:

$$
|f(x)-f(y)|=\left|f(x)-f(y)+f\left(x_{0}\right)-f\left(x_{0}\right)\right|=\left|f\left(x-y+x_{0}\right)-f\left(x_{0}\right)\right|<\epsilon
$$

substituting $\left(x-y+x_{0}\right) \mapsto x$. This shows that f is continuous on \mathbb{R}.
With the claim above, let $x \in \mathbb{R}$. Then by density of rational numbers, there exists a sequence $\left(r_{n}\right) \subseteq \mathbb{Q}$ such that $\left(r_{n}\right)$ converges to x. By the sequential criterion for continuity, $f(x)=\lim _{n \rightarrow \infty} f\left(r_{n}\right)$. But since $r_{n} \in \mathbb{Q}$, we have $f\left(r_{n}\right)=f\left(r_{n} \cdot 1\right)=$ $r_{n} f(1)$, by Step 2. Using continuity, we have

$$
f(x)=\lim _{n \rightarrow \infty} f\left(r_{n}\right)=\lim _{n \rightarrow \infty}\left(r_{n} f(1)\right)=\left(\lim _{n \rightarrow \infty} r_{n}\right) f(1)=x f(1)
$$

Therefore we have shown that $c=f(1) \in \mathbb{R}$ as required.
2. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
g(x):=\left\{\begin{array}{l}
2 x, \text { if } x \in \mathbb{Q} \\
x+3, \text { if } x \in \mathbb{R} \backslash \mathbb{Q}
\end{array}\right.
$$

Find the continuity points of g.
Proof. We claim that g is continuous at $x=3$ but nowhere else.
Continuity at $x=3$:
Let $\epsilon>0$. Note that $g(3)=2 \times 3=6$ since $3 \in \mathbb{Q}$. We choose $\delta:=\frac{\epsilon}{2}>0$. Then for $|x-3|<\delta$,

$$
|g(x)-6|=\left\{\begin{array}{l}
2|x-3|<2 \delta=\epsilon, \text { if } x \in \mathbb{Q} \\
|x+3-6|=|x-3|<\delta<\epsilon, \text { if } x \in \mathbb{R} \backslash \mathbb{Q}
\end{array}\right.
$$

Therefore g is continuous at $x=3$.

Discontinuity at $x \neq 3$:
Let $x \neq 3$. Whatever $g(x)$ is, by sequential criterion, it suffices to find two sequences $\left(x_{n}\right),\left(y_{n}\right)$ which converge to x but $g\left(x_{n}\right), g\left(y_{n}\right)$ converge to different limits. To this end, we choose $\left(x_{n}\right)$ be a rational sequence converging to x, and $\left(y_{n}\right)$ be an irrational sequence converging to x, whose existence is guaranteed by density of rational (resp. irrational) numbers in \mathbb{R}. Notice that $g\left(x_{n}\right)=2 x_{n} \rightarrow 2 x, g\left(y_{n}\right)=y_{n}+3 \rightarrow x+3$. Since $x \neq 3,2 x \neq x+3$, and hence $g\left(x_{n}\right), g\left(y_{n}\right)$ converge to different limits. This shows that g is discontinuous at any $x \neq 3$.
3. Let $f: A \rightarrow \mathbb{R}, x_{0} \in \mathbb{R}$ a cluster point with respect to A, and suppose that $\lim _{x \rightarrow x_{0}} f(x)$ does not exist in \mathbb{R}. Show that there exists $\epsilon>0$ and two sequences $\left(x_{n}\right),\left(y_{n}\right) \subseteq A \backslash\left\{x_{0}\right\}$ converging to x_{0} such that $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon$ for any n.
If f is bounded, show further that there exist two real numbers $l^{\prime}, l^{\prime \prime} \in \mathbb{R}$ and two sequences $\left(x_{n}^{\prime}\right)$ and $\left(y_{n}^{\prime}\right) \subseteq A \backslash\left\{x_{0}\right\}$ converging to x_{0} such that $f\left(x_{n}^{\prime}\right), f\left(y_{n}^{\prime}\right)$ converge to $l^{\prime}, l^{\prime \prime}$, respectively, but that $l^{\prime} \neq l^{\prime \prime}$.

Proof. First Part:

We will use a result in Q2, Homework 5, the Cauchy criterion for existence of limits of functions. Since now $\lim _{x \rightarrow x_{0}} f(x)$ does not exist in \mathbb{R}, by the negation, there exists $\epsilon>0$ such that for all $\delta>0$, there exist $x, x^{\prime} \in A \backslash\left\{x_{0}\right\}$ with $\left|x-x_{0}\right|<\delta$, $\left|x^{\prime}-x_{0}\right|<\delta$ such that

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \geq \epsilon
$$

Now for each $n \in \mathbb{N}$, we take $\delta:=\frac{1}{n}>0$, and denote x, x^{\prime} by x_{n}, y_{n} respectively, for each $n \in \mathbb{N}$. In this way we have constructed two sequences $\left(x_{n}\right),\left(y_{n}\right) \subseteq A \backslash\left\{x_{0}\right\}$ converging to x_{0} such that $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon$ for any n.

Second Part:

By the first part, we obtain $\epsilon>0$ and the two sequences $\left(x_{n}\right),\left(y_{n}\right)$ as desired. Since f is bounded, in particular, the sequences $f\left(x_{n}\right), f\left(y_{n}\right)$ are bounded. By BolzanoWeierstrass theorem, there are real numbers $l^{\prime}, l^{\prime \prime}$ and subsequences $f\left(x_{n_{k}}\right)$ of $f\left(x_{n}\right)$ and $f\left(y_{n_{k}}\right)$ of $f\left(y_{n}\right)$ such that $f\left(x_{n_{k}}\right) \rightarrow l, f\left(y_{n_{k}}\right) \rightarrow l^{\prime}$. Denote $f\left(x_{n_{k}}\right)$ as $f\left(x_{n}^{\prime}\right)$ and $f\left(y_{n_{k}}\right)$ as $f\left(y_{n}^{\prime}\right)$.

However, by construction, $\left|f\left(x_{n}^{\prime}\right)-f\left(y_{n}^{\prime}\right)\right| \geq \epsilon$ for any n. By the order preserving property, we have

$$
\left|l^{\prime}-l^{\prime \prime}\right|=\lim _{n \rightarrow \infty}\left|f\left(x_{n}^{\prime}\right)-f\left(y_{n}^{\prime}\right)\right| \geq \epsilon
$$

(Notice that here $\epsilon>0$ is a fixed constant; not to be confused with the arbitrary $\epsilon>0$ when we prove the existence of limits)

In particular, we have shown that $l^{\prime} \neq l^{\prime \prime}$.
4. Consider real numbers $a<b<c$. Let $f:(a, b] \rightarrow \mathbb{R}, g:[b, c) \rightarrow \mathbb{R}$ be continuous at b, and suppose that $f(b)=g(b)$. Let $h:(a, c) \rightarrow \mathbb{R}$ be defined by:

$$
h(x):=\left\{\begin{array}{l}
f(x), \text { if } x \in(a, b] \\
g(x), \text { if } x \in[b, c)
\end{array}\right.
$$

Show that
(a) h is continuous at b.
(b)If f, g are uniformly continuous then so is h.

Proof. (a) Note that the condition that $f(b)=g(b)$ ensures that $h(b)$ is well-defined. Let $\epsilon>0$. Since f is continuous at b, there is $\delta_{1}>0$ such that for each $b-\delta_{1}<x \leq b$, $x>a$,

$$
|f(x)-f(b)|<\epsilon
$$

Similarly, since g is continuous at b, there is $\delta_{2}>0$ such that for each $b \leq x<x+\delta_{2}$, $x<c$,

$$
|g(x)-g(b)|<\epsilon
$$

Then take $\delta:=\min \left\{\delta_{1}, \delta_{2}\right\}>0$. For $b-\delta<x<b+\delta, a<x<c$, we have:

$$
|h(x)-h(b)|=\left\{\begin{array}{l}
|f(x)-f(b)|<\epsilon, \text { if } a<x \leq b \\
|g(x)-g(b)|<\epsilon, \text { if } b \leq x<c
\end{array}\right.
$$

Hence g is continuous at b.
(b) Let $\epsilon>0$. Since f is uniformly continuous, there is $\delta_{3}>0$ such that for each $|x-y|<\delta_{3}, a<x \leq b, a<y \leq b$,

$$
|f(x)-f(y)|<\frac{\epsilon}{2}
$$

Similarly, since g is uniformly continuous, there is $\delta_{4}>0$ such that for each $|x-y|<$ $\delta_{4}, b \leq x<c, b \leq y<c$,

$$
|g(x)-g(y)|<\frac{\epsilon}{2}
$$

Then take $\delta^{\prime}:=\min \left\{\delta_{3}, \delta_{4}\right\}>0$. For $|x-y|<\delta^{\prime}, a<x<c, a<y<c$, we have:

$$
|h(x)-h(y)|=\left\{\begin{array}{l}
|f(x)-f(y)|<\frac{\epsilon}{2}<\epsilon, \text { if } a<x \leq b, a<y \leq b \\
|g(x)-g(y)|<\frac{\epsilon}{2}<\epsilon, \text { if } b \leq x<c, b \leq y<c \\
|f(x)-g(y)| \leq|f(x)-f(b)|+|g(y)-g(b)|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \\
\text { if } a<x \leq b, b \leq y<c \\
|g(x)-f(y)| \leq|g(x)-g(b)|+|f(y)-f(b)|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \\
\text { if } b \leq x<c, a<y \leq b
\end{array}\right.
$$

Hence h is uniformly continuous on (a, c).

